Astronomy articles to help you discover the wonders of the universe.


Clocks of the universe

Written By on in Astronomy

484 words, estimated reading time 3 minutes.

Pulsars are highly magnetised, rotating neutron stars that emit a beam of electromagnetic radiation. The radiation can only be observed when the beam of emission is pointing towards the Earth. This is called the lighthouse effect and gives rise to the pulsed nature that gives pulsars their name.

Astronomical Objects Series
  1. What are Asteroids, Meteors and Comets?
  2. Binary Stars and Double Stars
  3. Variable Stars
  4. Supernova and Supernovae
  5. Types of Nebula and Nebulae
  6. Black Holes
  7. Quasars
  8. Pulsars
  9. Gamma Ray Bursts
  10. Kuiper Belt
  11. What is a Galaxy?
  12. The Messier Catalogue
  13. The Caldwell Catalogue
  14. 25 Stunning Sights Every Astronomer Should See

Because neutron stars are very dense objects, the rotation period and thus the interval between observed pulses is very regular. For some pulsars, the regularity of pulsation is as precise as an atomic clock. The observed periods of their pulses range from 1.4 milliseconds to 8.5 seconds. A few pulsars are known to have planets orbiting them, such as PSR B1257+12.

Cycle of pulsed gamma rays from the Vela pulsar.
Cycle of pulsed gamma rays from the Vela pulsar.

Formation of Pulsars

The events leading to the formation of a pulsar begin when the core of a massive star is compressed during a supernova, which collapses into a neutron star. The neutron star retains most of its angular momentum, and since it has only a tiny fraction of its progenitor's radius (and therefore its moment of inertia is sharply reduced), it is formed with very high rotation speed. A beam of radiation is emitted along the magnetic axis of the pulsar, which spins along with the rotation of the neutron star. The magnetic axis of the pulsar determines the direction of the electromagnetic beam, with the magnetic axis not necessarily being the same as its rotational axis. This misalignment causes the beam to be seen once for every rotation of the neutron star, which leads to the "pulsed" nature of its appearance.

Schematic view of a pulsar. The sphere in the middle represents the neutron star, the curves indicate the magnetic field lines and the protruding cones represent the emission zones.
Schematic view of a pulsar. The sphere in the middle represents the neutron star, the curves indicate the magnetic field lines and the protruding cones represent the emission zones.

The beam originates from the rotational energy of the neutron star, which generates an electrical field from the movement of the very strong magnetic field, resulting in the acceleration of protons and electrons on the star surface and the creation of an electromagnetic beam emanating from the poles of the magnetic field.

Pulsar Naming Convention

Initially, pulsars were named with letters of the discovering observatory followed by their right ascension (e.g. CP 1919). As more pulsars were discovered, the letter code became unwieldy and so the convention was then superseded by the letters PSR (Pulsating Source of Radio) followed by the pulsar's right ascension and degrees of declination (e.g. PSR 0531+21) and sometimes declination to a tenth of a degree (e.g. PSR 1913+167). Pulsars that are very close together sometimes have letters appended (e.g. PSR 0021-72C and PSR 0021-72D).

The modern convention is to prefix the older numbers with a B (e.g. PSR B1919+21) with the B meaning the coordinates are for the 1950.0 epoch. All new pulsars have a J indicating 2000.0 coordinates and also have declination including minutes (e.g. PSR J1921+2153). Pulsars that were discovered before 1993 tend to retain their B names rather than use their J names (e.g. PSR J1921+2153 is more commonly known as PSR B1919+21). Recently discovered pulsars only have a J name (e.g. PSR J0437-4715). All pulsars have a J name that provides more precise coordinates of its location in the sky.

Last updated on: Wednesday 24th January 2018



There are no comments for this post. Be the first!


Leave a Reply

Your email address will not be published.

If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Copyright © 2001-2018 Tim Trott, all rights reserved. Web Design by Azulia Designs

This web page is licensed for your personal, private, non-commercial use only.

Disclaimer, Privacy & LegalSitemapContact Me